The Fundamental Theorem of Invertible Matrices

Let A be an $n \times n$ matrix. The following statements are equivalent:

a. A is invertible.

b. $Ax = b$ has a unique solution for every b in \mathbb{R}^n.

c. $Ax = 0$ has only the trivial solution.

d. The reduced row echelon form (RREF) of A is I_n.

e. A is a product of elementary matrices.

f. $\text{rank}(A) = n$

g. $\text{nullity}(A) = 0$

h. The column vectors of A are linearly independent.

i. The column vectors of A span \mathbb{R}^n.

j. The column vectors of A form a basis of \mathbb{R}^n.

k. The row vectors of A are linearly independent.

l. The row vectors of A span \mathbb{R}^n.

m. The row vectors of A form a basis of \mathbb{R}^n.

n. $\det A \neq 0$

o. 0 is not an eigenvalue of A.