Methods of Proof Examples

Gilles Cazelaïs

We start with an example of a direct proof.

Proposition 1. If \(n \) is an odd integer, then \(n^2 \) is an odd integer.

Proof. Let \(n \) be an odd integer, then \(n = 2k + 1 \) for some integer \(k \). Then,

\[
 n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.
\]

Since \(n^2 = 2m + 1 \) for the integer \(m = 2k^2 + 2k \), we conclude that \(n^2 \) is odd. \(\square \)

To prove a proposition in the form \(p \rightarrow q \), it is sufficient to prove its logically equivalent contrapositive \(\neg q \rightarrow \neg p \). This is called a proof by contrapositive.

Proposition 2. If \(n^2 \) is an even integer, then \(n \) is an even integer.

Proof. The contrapositive of

\[
 (n^2 \text{ is an even integer}) \rightarrow (n \text{ is an even integer})
\]

is

\[
 \neg(n \text{ is an even integer}) \rightarrow \neg(n^2 \text{ is an even integer})
\]

which is equivalent to

\[
 (n \text{ is an odd integer}) \rightarrow (n^2 \text{ is an odd integer})
\]

which was proved in Proposition 1. \(\square \)

A proof by contradiction works as follows. To prove \(p \), start by assuming that \(p \) is false and deduce consequences. If you deduce a contradiction with something known or assumed to be true, then the initial assumption that \(p \) is false was wrong. Therefore, \(p \) must be true.
Proposition 3. $\sqrt{2}$ is an irrational number.

Proof. Assume that $\sqrt{2}$ is a rational number. Then, $\sqrt{2} = a/b$ for two positive integers a and b. Assume that a and b have no common factors so that the fraction a/b is an irreducible fraction. By squaring both sides of $\sqrt{2} = a/b$, we deduce $2 = a^2/b^2$. Therefore

$$2b^2 = a^2$$

which implies that a^2 is even. From Proposition 2, we conclude that a is even, i.e., $a = 2k$ for some integer k. Substitute $a = 2k$ in equation (1) to get

$$b^2 = 2k^2.$$

We conclude that b^2 is even which implies that b is even. We have derived that both a and b are even but this a contradiction since we assumed that the fraction a/b was irreducible. Therefore, $\sqrt{2}$ is an irrational number. \qed

Let’s now look an example of a proof by cases.

Proposition 4. There exists irrational numbers a and b such that a^b is rational.

Proof. Consider the number $\sqrt{2}^{\sqrt{2}}$ which is either rational or irrational.

Case 1. If $\sqrt{2}^{\sqrt{2}}$ is rational, by choosing $a = b = \sqrt{2}$ we get that a^b is rational.

Case 2. If $\sqrt{2}^{\sqrt{2}}$ is irrational, by choosing

$$a = \sqrt{2}^{\sqrt{2}} \text{ and } b = \sqrt{2}$$

we get that a^b is rational since

$$a^b = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \left(\sqrt{2}\right)^2 = 2.$$ \qed

Observe that this proof does not tell us whether $\sqrt{2}^{\sqrt{2}}$ is rational or irrational. We used the fact that it is either rational or irrational.