Curve sketching examples

Example 1. Use derivatives to sketch the graph of $y = x^3 - 3x^2 + 5$.

Solution: The first two derivatives are

$$y' = 3x^2 - 6x = 3x(x - 2)$$

 $y'' = 6x - 6 = 6(x - 1).$

We have y' = 0 for x = 0 and x = 2. We say that x = 0 and x = 2 are critical numbers. Let's make a sign chart to analyze the signs of y'.

	$(-\infty, 0)$	(0, 2)	$(2,\infty)$	
3x	—	+	+	
(x-2)	_	—	+	
y′	+	—	+	
y	7	\searrow	\nearrow	

Observe that x = 0 corresponds to a relative maximum and x = 2 corresponds to a relative minimum.

We have y'' = 0 for x = 1. Let's make a sign chart to analyse the signs of y''.

	$(-\infty, 1)$	$(1,\infty)$
(x - 1)	—	+
y″	—	+
y	\cap	U

Observe that concavity changes when x = 1. This means that when x = 1, we have an inflection point. Let's now summarize all our information and sketch the graph.

	y	y′	y″	Characteristic of Graph
$-\infty < x < 0$		+	—	Increasing \nearrow , concave down \cap
x = 0	5	0	_	Relative maximum
0 < x < 1		_	_	Decreasing \searrow , concave down \cap
x = 1	3	_	0	Inflection point
1 < x < 2		—	+	Decreasing \searrow , concave up \cup
x = 2	1	0	+	Relative minimum
$2 < x < \infty$		+	+	Increasing \nearrow , concave up \cup

To find the x-intercept, we can use Newton's method to get $x \approx -1.1038$.

Example 2. Use derivatives to sketch the graph of $y = \frac{x^2 + 5x + 1}{x^2} = 1 + \frac{5}{x} + \frac{1}{x^2}$.

Solution: Since x = 0 makes the denominator of y equal to 0, we conclude that x = 0 corresponds to a vertical asymptote.

As $x \to \infty$ and $x \to -\infty$, we have $y \to 1$. Therefore, y = 1 corresponds to a horizontal asymptote.

To find the x-intercepts, we solve $x^2+5x+1=0$. Using the quadratic formula, we find two x-intercepts.

$$x = \frac{-5 \pm \sqrt{21}}{2} \implies x \approx -4.791 \text{ or } x \approx -0.209$$

The first two derivatives are

$$y' = -\frac{5}{x^2} - \frac{2}{x^3} = \frac{-(5x+2)}{x^3} \quad \text{and} \quad y'' = \frac{10}{x^3} + \frac{6}{x^4} = \frac{10x+6}{x^4}.$$

We have y' = 0 for x = -2/5 and y' is undefined for x = 0. Let's make a sign chart for y'.

	$(-\infty, -2/5)$	(-2/5, 0)	$(0,\infty)$
-(5x+2)	+	_	_
x ³	_	—	+
y′	_	+	_
y	\searrow	7	\searrow

We have y'' = 0 for x = -3/5 and y'' is undefined for x = 0.. Let's make a sign chart for y''.

	$(-\infty, -3/5)$	(-3/5, 0)	$(0,\infty)$
10x + 6	—	+	+
x ⁴	+	+	+
y″	—	+	+
y	\cap	U	U

Let's now summarize all our information and sketch the graph.

	y	y'	y″	Characteristic of Graph
$\boxed{-\infty < x < -3/5}$		—	—	Decreasing \searrow , concave down \cap
x = -3/5	-41/9	—	0	Inflection point
-3/5 < x < -2/5		—	+	Decreasing \searrow , concave up \cup
x = -2/5	-21/4	0	+	Relative minimum
-2/5 < x < 0		+	+	Increasing \nearrow , concave up \cup
x = 0	Undef.	Undef.	Undef.	Vertical asymptote
$0 < x < \infty$		—	+	Decreasing \searrow , concave up \cup

